Bortrensning af steroidøstrogener i et moderne biologisk spildevandsrenseanlæg

Henrik Andersen Ph. D. studerende Danmarks Farmaceutiske Højskole Henrik@ndersen.net

Samarbejdspartnere

Undersøgelsen er lavet indenfor rammerne af Poseidon projektet i EU's 5. rammeprogram i samarbejde med:

- Dr. Thomas Ternes, ESWE, Tyskland.
- Nadine Herman, Jeanette Stüber & Matthias Bonerz, ESWE, Tyskland.
- Dr. Hansruedi Siegrist, EAWAG, Schweitz.
- Bent Halling-Sørensen, Søren Nors Nielsen, Flemming Ingerslev & Sven Erik Jørgensen. DFH

Hvorfor steroidøstrogener i byspildevand?

Figur 1. Koncentrationer af blommeprotein i blodet hos hanner af regnbueørreder udsat i netbure i 3 uger i forskellige engelske floder.

Figur fra Bjerregård, P. & Korsgaard, B. (1999) Miljøforskning 40, 11-13.

$$EEC_{Prøve} = RPE_{\emptyset 1} * C_{\emptyset 1, Prøve} + RPE_{\emptyset 2} * C_{\emptyset 2, Prøve} + \dots$$

Sammenlign potens og kemisk koncentration

Motiv - Østrogener i spildevand er i høj grad steroidøstrogener

Søjler represænterer hvor stor del af østrogeneffekten steroidøstrogener bidrager med.

Figurer fra Körner et al., (2001) Environ. Tox. Chem. 20(10), 2142-2151.

Motiv – Danske analyser tyder også på steroid østrogener

	Målte koncentrationer				Grænse	Max målt	
	Årh	us	København		for effekt	Effekt på fisk	
	Middel	Max	Min	Max	på fisk	Århus	København
Nonylphenol (µg/l)	<ld< td=""><td>0,29</td><td colspan="2" rowspan="3">lkke målt i denne under- søgelse.</td><td>6,1</td><td>0,048</td><td rowspan="3">lkke målt i denne under- søgelse</td></ld<>	0,29	lkke målt i denne under- søgelse.		6,1	0,048	lkke målt i denne under- søgelse
Octylphenol (µg/l)	<ld< td=""><td><ld< td=""><td>4,8</td><td>-</td></ld<></td></ld<>	<ld< td=""><td>4,8</td><td>-</td></ld<>			4,8	-	
Bisphenol A (µg/l)	<ld< td=""><td>4</td><td>5,9</td><td>0,68</td></ld<>	4			5,9	0,68	
Østron (ng/l)	1,2	6,1	<ld< td=""><td>63</td><td>8</td><td>0,76</td><td>7,9</td></ld<>	63	8	0,76	7,9
17β-østradiol (ng/l)	<ld< td=""><td>2,5</td><td><ld< td=""><td>11</td><td>0,5</td><td>5,0</td><td>22</td></ld<></td></ld<>	2,5	<ld< td=""><td>11</td><td>0,5</td><td>5,0</td><td>22</td></ld<>	11	0,5	5,0	22
17α-ethinyløstradiol (ng/l)	<ld< td=""><td>4,7</td><td>4,9</td><td>7,0</td><td>0,03</td><td>160</td><td>233</td></ld<>	4,7	4,9	7,0	0,03	160	233

Renseanlægget

Fig. 3. Elimination in % and loads of estrogens during passage through a municipal sewage treatment plant located near Frankfurt/Main over 6 days. Sampling periods: 23-30 November 1997.

Figur fra Ternes, T. et al., (1999) Sci. Total Env. 222, 81-90.

Historie -Udløbskoncentrationer

Østron	24 ng/l		
17β-østradiol	5 ng/l		
17α-ethinyløstradiol	2 ng/l		

Juni 2001

Østron	<1 ng/l
17β-østradiol	<1 ng/l
17α-ethinyløstradiol	<1 ng/l

Diagram af renseanlæg

Analysemetoder

- Ekstraktion af 1 liter vandprøver med fastfase C18 og 0,5 g frysetørret slam ekstraheres (2x methanol + 2x acetone).
- Oprensning med preparativ størrelseschromatografi. (Hexan:Acetone)
- Oprensning med de-aktiveret silikatsøjle. (Hexan:Acetone)
- Derivatisering med MSTFA.
- Analyse GC-Iontrap-MS/MS

Vandprøver: Ternes, T. et al. (1999). Sci. Total Env. 222, 81-90. Slamprøver: Ternes, T. et al. (2002) Anal. Chem. 74, 3498-3504.

Steroidøstrogenprofil i vand

Steroidøstrogenprofil i slam

Massebalance - E1+E2

Konklusion

- I dette anlæg ender i størrelsesordenen 5% af steroidøstrogenerne i slam og mindre udledes i effluenten. Hovedparten nedbrydes.
- Sorption, spaltning af glucoronid-østrogener og bionedbrydning er vigtige processer i steroidøstrogeners kemi i rensningsanlæg.
- Nedbrydning af steroidøstrogener sker i dette renseanlæg hovedsageligt i forbindelse med denitrifikation.
- Kan optimering af denitrifikationstrinnet være en renseteknik for steroidøstrogener på linie med ozon?

Østrogen de-aktiveres

til låsen

Reaktivering af steroidøstrogener i renseanlæg Det sukkermodificerede østrogen udskilles fra kroppen og ender i renseanlægget. Her bider bakterier sukkeret af østrogenet som igen bliver aktivt. En del af østrogenet nedbrydes herefter

Model Processer

 17α -Estradiol-glucuronide (E2_{gluc}) Estrone-glucuronide (E1_{gluc}) Cleavage: Cleavage: kE2gluc·TSS·CE2gluc k_{E1gluc}·TSS·C_{E1gluc} $k_{E2gluc} = 20 L/(gTSS \cdot d)$ $k_{E1gluc} = 20 L/(gTSS \cdot d)$ E1 oxidation: E2 oxidation: $k_{E1} \cdot TSS \cdot C_{E2}$ k_{E2}·TSS·C_{E2} Estrone (E1) 17α-Estradiol (E2) $k_{E1} = 20 L/(gTSS \cdot d)$ $k_{E2} = 60 L/(gTSS \cdot d)$ Sorption: Sorption: $k_{E1,sor} TSS (C_{E1} - x_{E1}/K_{D,E1})$ $k_{E2,sor} TSS \cdot (C_{E2} - x_{E2}/K_{D,E2})$ $k_{E1,sor} = 5 L/(gTSS \cdot d)$ $k_{E2,sor} = 5 L/(gTSS \cdot d)$ $K_{D,E1} = 1.5 L/gTSS$ $K_{D,E2} = 2 L/gTSS$ sorbed 17 α -Estradiol (x_{E1}) sorbed Estrone (x_{E2})

